The Topological Particle and Morse Theory
نویسنده
چکیده
Canonical BRST quantization of the topological particle defined by a Morse function h is described. Stochastic calculus, using Brownian paths which implement the WKB method in a new way providing rigorous tunnelling results even in curved space, is used to give an explicit and simple expression for the matrix elements of the evolution operator for the BRST Hamiltonian. These matrix elements lead to a representation of the manifold cohomology in terms of critical points of h along lines developed by Witten [1].
منابع مشابه
A New Modification of Morse Potential Energy Function
Interaction of meso — tetrakis (p-sulphonato phenyl) porphyrin (hereafter abbreviated to TSPP)with Na+ has been examined using HF level of theory with 6-31G* basis set. Counterpoise (CP)correction has been used to show the extent of the basis set superposition error (BSSE) on thepotential energy curves. The numbers of Na+ have a significant effect on the calculated potentialenergy curve (includ...
متن کاملComputing Persistent Homology via Discrete Morse Theory
This report provides theoretical justification for the use of discrete Morse theory for the computation of homology and persistent homology, an overview of the state of the art for the computation of discrete Morse matchings and motivation for an interest in these computations, particularly from the point of view of topological data analysis. Additionally, a new simulated annealing based method...
متن کاملGinsburg-Pitaevski-Gross differential equation with the Rosen-Morse and modified Woods-Saxon potentials
In this paper, we consider non-linear Ginsburg-Pitaevski-Gross equation with the Rosen-Morse and modifiedWoods-Saxon potentials which is corresponding to the quantum vortices and has important applications in turbulence theory. We use the Runge- Kutta-Fehlberg approximation method to solve the resulting non-linear equation.
متن کاملDiscrete Morse Theory and the Homotopy Type of Clique Graphs
We attach topological concepts to a simple graph by means of the simplicial complex of its complete subgraphs. Using Forman’s discrete Morse theory we show that the strong product of two graphs is homotopic to the topological product of the spaces of their complexes. As a consequence, we enlarge the class of clique divergent graphs known to be homotopy equivalent to all its iterated clique graphs.
متن کاملDevelopment of Morse Theory
In this paper, we develop Morse theory, which allows us to determine topological information about manifolds using certain real-valued functions defined on the manifolds. We first prove the Morse lemma, which says that, near critical points, such functions can be written in a useful way that gives us topological information. We then show how the homotopy type of the manifold is related to the i...
متن کامل