The Topological Particle and Morse Theory

نویسنده

  • Alice Rogers
چکیده

Canonical BRST quantization of the topological particle defined by a Morse function h is described. Stochastic calculus, using Brownian paths which implement the WKB method in a new way providing rigorous tunnelling results even in curved space, is used to give an explicit and simple expression for the matrix elements of the evolution operator for the BRST Hamiltonian. These matrix elements lead to a representation of the manifold cohomology in terms of critical points of h along lines developed by Witten [1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Modification of Morse Potential Energy Function

Interaction of meso — tetrakis (p-sulphonato phenyl) porphyrin (hereafter abbreviated to TSPP)with Na+ has been examined using HF level of theory with 6-31G* basis set. Counterpoise (CP)correction has been used to show the extent of the basis set superposition error (BSSE) on thepotential energy curves. The numbers of Na+ have a significant effect on the calculated potentialenergy curve (includ...

متن کامل

Computing Persistent Homology via Discrete Morse Theory

This report provides theoretical justification for the use of discrete Morse theory for the computation of homology and persistent homology, an overview of the state of the art for the computation of discrete Morse matchings and motivation for an interest in these computations, particularly from the point of view of topological data analysis. Additionally, a new simulated annealing based method...

متن کامل

Ginsburg-Pitaevski-Gross differential equation with the Rosen-Morse and modified Woods-Saxon potentials

In this paper, we consider non-linear Ginsburg-Pitaevski-Gross equation with the Rosen-Morse and modifiedWoods-Saxon potentials which is corresponding to the quantum vortices and has important applications in turbulence theory. We use the Runge- Kutta-Fehlberg approximation method to solve the resulting non-linear equation.    

متن کامل

Discrete Morse Theory and the Homotopy Type of Clique Graphs

We attach topological concepts to a simple graph by means of the simplicial complex of its complete subgraphs. Using Forman’s discrete Morse theory we show that the strong product of two graphs is homotopic to the topological product of the spaces of their complexes. As a consequence, we enlarge the class of clique divergent graphs known to be homotopy equivalent to all its iterated clique graphs.

متن کامل

Development of Morse Theory

In this paper, we develop Morse theory, which allows us to determine topological information about manifolds using certain real-valued functions defined on the manifolds. We first prove the Morse lemma, which says that, near critical points, such functions can be written in a useful way that gives us topological information. We then show how the homotopy type of the manifold is related to the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000